【廣告】
人工智能控制器
通過適當(dāng)調(diào)整(根據(jù)響應(yīng)時(shí)間、下降時(shí)間、魯棒性能等)它們能提。例如:模糊邏輯控制器的上升時(shí)間比優(yōu)PID控制器快1.5倍,下降時(shí)間.5倍,過沖更小。它們比古典控制器的調(diào)節(jié)容易。在沒有必須知識(shí)時(shí),通過響應(yīng)數(shù)據(jù)也能設(shè)計(jì)它們。運(yùn)用語言和響應(yīng)信息可能設(shè)計(jì)它們。們有相當(dāng)好的一致性(當(dāng)使用一些新的未知輸入數(shù)據(jù)就能得到好的估計(jì))
在各種出版物中,介紹了許多被模糊化的控制器,但這應(yīng)與“充分模糊”控制器完全區(qū)分開來,“充分模糊”控制器才是完全意義上的模糊控制器,被模糊化的控制器易于實(shí)現(xiàn),往往通過改造現(xiàn)有古典控制器得以實(shí)現(xiàn),如被模糊化的PI控制器(FPIC)使用模糊邏輯改變控制器的比例、積分參數(shù),從而使系統(tǒng)的性能得到提高
人工智能技術(shù)控制器
誤差反向傳播技術(shù)性是雙層前聵ANN常見的學(xué)技術(shù)。假如互聯(lián)網(wǎng)有充足多的隱藏層和隱藏結(jié)點(diǎn)及其適合的激勵(lì)函數(shù),雙層ANN只有完成必須的投射,沒有立即的技術(shù)性挑選佳隱藏層、結(jié)點(diǎn)數(shù)和激勵(lì)函數(shù),一般用嘗試法處理這個(gè)問題,反向傳播訓(xùn)煉優(yōu)化算法是基本上的更快降低法,輸出結(jié)點(diǎn)的誤差意見反饋回互聯(lián)網(wǎng),用以權(quán)重值調(diào)節(jié),檢索佳。